
November 10, 1994
Software Productivity Consortium

1

An Approach to Specifying Requirements for User Interfaces
Grady H. Campbell, Jr.

Spectrum, developed from 1984–1988 at Template Software, was an application engineering
environment designed to support the construction of workstation–based information and decision
support systems. Spectrum users constructed systems by describing the properties of a required
system in Spectrum's notation. This description was in principle a requirements specification (or
application model), formalized sufficiently to drive automatic derivation of a standardized design
and selection, adaptation, and composition of reusable components producing a corresponding
system. A specification for an application system consisted primarily of:
S A “world model" represented as an active semantic data model consisting of classes

of objects having associated attributes and computations.
S An “external interface" described as a set of “logical devices" having associated

inputs and outputs.
The concept of a Spectrum specification was modeled on the principles of the SCR requirements
specification [1]. The external interface concept was also influenced by research in user
interfaces (e.g., [2], [3], [4], [5]). The world model concept was conceived as a formalization of
the term dictionary of the SCR requirements, influenced by research in semantic data models
(surveyed in [6]) and needed to enable automatic software generation. The purpose of this paper
is to describe the approach to specifying a user interface exemplified in Spectrum and to
compare this with other popular approaches to creating a user interface.
The Spectrum Model of User Interface Devices and Input/Output
For information and decision support systems, a primary type of device that should be
specifiable is a “user display." A user display corresponds to a logical user role in an envisioned
system. The Spectrum model of user interfaces comprised a variety of concepts. The following
items informally characterize this model:
S User Interface Device. The basic physical user interface device, consisting of both

hardware and software, is a general–purpose, windowing CRT screen with keyboard
and mouse. (Variations on this type of device and other types of user interface
device, such as printers, are treated similarly but not discussed here.) The physical
device supports multiple logical user interface devices, each corresponding to a user
role. Each logical device is independently mapped onto the physical device,
abstracting that device's mechanisms and sharing its resources with other logical
devices. (The TC–2 Panel is the closest A–7 analog to this type of device.)

S User Interaction. User interaction with a system occurs via a logical user interface
device associated with a particular user role. That device is characterized by a set of
output displays. The displays are organized into a control structure in which active
displays exhibit data, enable input of data, enable activation of computational
processes (defined by the world model), and enable activation of other output
displays.

S Outputs. The world model defines the data represented in the system. An output is
a displayable representation of some portion of that data, displayed either in a
window of the logical device or as a component of a larger output. Displayable

•

•

•

•

•

Software Productivity Consortium

November 10, 1994
Software Productivity Consortium

2

representations include text, images (such as icons, maps, and pictures), graphics,
audio, video, and compositions of these (such as text labeling a picture or a path on
a map). Each representation has associated attributes, such as color and font for text
or volume for audio. A data item can be simple or arbitrarily composite. A
composite data item may be displayed in a monolithic form that abstracts its content
or in a composite form having parts analogous to and derived from its internal
structure. Outputs have physical dimensions and are mapped into the coordinate
space of a logical user interface device screen.

S Inputs. Just as outputs are representations of internal data, inputs are user
expressions of data to be represented internally. Keyboard and mouse buttons are
basic mechanisms of input. Beyond these basic mechanisms, extended input
mechanisms can be represented in abstract forms combining basic input and output
mechanisms as needed to represent the type of data being input. Extended
mechanisms include text entry, selection of items from a menu (which can be
inferred from actions enabled within an output context), and graphical entry
mechanisms such as toggles, switches, pushbuttons, sliders, and dials.

S Input/Output Correlation. User inputs are very context sensitive. They are usually
defined/enabled within the context (physical boundaries) of a particular output. A
particular input can mean different things when received within the `boundaries' of
different outputs (i.e., there is a concept of the `location' of an input relative to
active outputs). Within a composite output, an input can mean different things at
different locations within the output. Exceptions to this correlation of input to
output, analogous to sensor device polling, is the initiation (prompting) of user input
as a world model source of information, as part of context setting for user
interaction, and as ancillary data which is part of a composite input.

S User Interface/World Model Correlation. A user interface displays the
information `known' to the system as defined by the world model. Although there
can be different ways to display particular information, the form of the information
can narrow the developer's choice to feasible alternatives or engender a preliminary
or default view without additional developer input. Because outputs are conceived
as views into a conceptual database defined by the world model, access to data is
implied by the specification of outputs. Because access is an implicit mechanism,
redisplay of data when changes occur is implicit. Similarly, associated world model
mechanisms (such as add, change, copy, and delete of data) imply capabilities for
input action.

The Spectrum User Interface Concept
The Spectrum capability to specify (and generate) a user interface was an implementation of the
model of user interfaces described above. A user interface is a set of user roles. Each user role is
defined by an organized set of displays. A display is defined by its information context (a class in
the world model), its content (a simple or composite output), its format, and associated actions
(including inputs and activation of related outputs). The displays that make up a user role are
organized into a control flow that is realized dynamically based on viewed information and
associated user actions.

•

•

•

November 10, 1994
Software Productivity Consortium

3

The following is a simplified (and somewhat incomplete) view of the abstract structure of a
Spectrum user interface specification ({...} indicates repetition, [... | ... | ...] indicates alternatives,
“..." is an elaborating comment):

User interface ::= {Display} “an interface is a set of displays, each defining a
user
 role"
Display ::= Context “the objects viewed through this display"
 [Controller | Output] “specification of a controller or output"
 {Input} “inputs that are available across the entire display"
 {Display} “Displays which are accessible within the
 containing display"
Controller ::= {Display} “the set of displays managed by the controller"
 Sequencing “the control regime followed by this controller"
Sequencing ::= [sequential “indicates a sequence of outputs/controllers"
 | selection “indicates a menu of outputs/controllers"
 | multiple] “indicates multiple concurrent outputs/controllers"
Context ::= Context_class “a candidate set of objects to be displayed"
 selector “a predicate to filter the object set"
Output ::= [Form | hierarchy | document | graphic]
 “(this is a conjectured, extensible set of output
types;
 only Form is expanded here; all output types would
 be expanded analogously)"
Form ::= {Field} “views into attributes of each context object"
Field ::= precondition “a predicate for whether a field is visible based on
the
 referenced object (e.g., in a specified subclass)"
 [Value “concrete data (alphanumeric, image, audio, video)"
 | Relation “a related set of objects that provide a new context"
 | Display] “an embedded display of a context object"
 format “constrains where the field is and how it looks"
 {Input} “inputs associated with this specific field only"
Relation ::= selector “a predicate to filter the related object set"
 Display “a nested display of related objects"
Input ::= precondition “a predicate for whether the action is enabled"
 action “a triggering key and/or menu entry descriptor"
 effect “meaning of the action, including input of ancillary
 data and world model update and process
activation"

A Spectrum user interface specification entails substantial implicit semantics. Implicit semantics
can be a source of expressive power or an imposition of inflexibility. An effective approach to
specifying user interfaces must find a balance between inflexibility and requiring expression of
too much incidental detail. A partial solution is to assume defaults at a particular level of

November 10, 1994
Software Productivity Consortium

4

specification but allow the developer to work at lower levels to refine the details of a
specification and supersede defaults. Alternatively, when it is possible to establish standards or
conventions, the developer is relieved of describing the corresponding details but can assume
that the user interface will be implemented in keeping with the implications of those standards
and conventions. In Spectrum, the specification of a user interface was simplified by limiting
output descriptions to a stylized set of formats and by defaulting the format of each output based
on corresponding world model definitions.
Comparisons with Other Approaches
Approaches to specifying a user interface can be compared by considering whether each is
prescriptive or descriptive, where the concepts it supports lie on the continuum from hardware
mechanism (implementation) to abstract interaction (requirements), and how much a
specification contributes to the creation of a complete system. As a rule, the ideal approach is
one that is descriptive without unreasonable limitations on developer flexibility, represents
interfaces in abstract terms matching the concepts of interaction natural to the problem being
solved, and is an integral element of a complete system specification. The Spectrum approach,
on this criteria, was properly descriptive and an integral element of a complete specification but
was not sufficiently flexible in its concepts of representation and interaction. Other approaches to
user interface specification are:
S User interface toolkits. Compared with a descriptive specification of a user

interface, a toolkit supports a prescriptive specification of a user interface which can
give the builder more flexibility in creating exactly the right interface. Examples of
toolkits are the various X window system toolkits, Microsoft's Windows SDK, and
Apple's Macintosh Toolbox. If a notation for descriptive specification does not give
the builder the right concepts or options, creating the desired interface can be
impossible or require compromises. However, the toolkit approach tends to blur the
distinction between requirements and engineering decisions. In addition, the cost in
using a toolkit is that the builder has to deal with all of the details of the interface,
including many that could be standardized by convention or inferred from the
specification of a particular interface.

S Visual (direct manipulation) user interface builders. The attraction of a visual
interface builder is that it is both descriptive and the developer can directly control
the way the interface will look. Examples of tools that include visual interface
builders are NextStep (NeXT Computer Inc.), Open Interface (Neuron Data Inc.),
Galaxy Application Environment (Visix Software Inc.), and XVT (XVT Software
Inc.). Using either a toolkit or a descriptive form fails to provide the builder with as
concrete a sense of what the interface really looks like. Such a sense can be gained
indirectly by generating the software and running it, or there may even be a tool that
can interpret the description and present the results to the builder. However, unless
the developer can manipulate the result to refine its looks, getting exactly the
intended look can be difficult and require repeated changes to the program or
interface description. Similar to the toolkit approach, this approach mixes
requirements and engineering decisions in a single representation. The visual
approach is also limiting if it forces the builder to rely on static positioning or
appearance when variable positioning or appearance would result in a more
effective interface.

•

•

November 10, 1994
Software Productivity Consortium

5

S Domain–specific user interface specifications. Spectrum interface concepts are
domain–independent. The Synthesis methodology for reuse–driven software
processes (defined in [7]) takes the view that, within a particular domain, there may
be standards for formatting or terminology that need not be reinvented, or even
explicitly stated, when specifying a user interface for a system in that domain. In
other words, the specification language can be tailored to the needs of a particular
domain, making the language more expressive and therefore reducing the effort to
describe an interface that adheres to the prescribed standards. Another way to think
of this is that, within a domain, there is more commonality in constructible systems'
user interfaces and less variability need be expressible.

A Related Issue: End–User Interface Tailoring
Many of the details of a user interface can be determined at any of three times: while the
software is being developed, while the software is being installed, or while the software is being
used. The latter two must be enabled by adding corresponding functionality to the software as it
is developed. Although resolving those details in software development tends to result in the
most efficient software and simplest interface, the alternatives are necessary when the details
cannot be constrained at development time because there are different users with different needs
or preferences that must be satisfied. However, preferences are often just that and the required
additional complexity in installation or system use does not justify this flexibility in the user
interface. The easy answer for many systems seems to be to just build all applications with a
plethora of user interface tailoring mechanisms that have nothing to do with the intended purpose
of the system, without regard to the complexity it adds.
Future Directions in User Interfaces
The trend for computers and user interfaces is toward integration of all types of media and
interaction. Effective use of audio and video, collaborative groupwork, and distributed
computing are just beginning to be understood and provide a substantial challenge in creating
user interfaces. Laurel [8] describes a compelling paradigm for user interfaces, originating in
work on computer games and based on an analogy with theater in which the audience both
observes the action and interacts with the actors (which in this case can be either human or
software). Emerging ideas in visualization and virtual reality may have similar implications for
the user interface concept. Specifying the sort of interface concept that results will require a
much more powerful and comprehensive concept of the nature and mechanisms of interaction.
References

 1. Kathryn Heninger, John Kallander, John Shore, and David Parnas,
Software Requirements for the A–7E Aircraft, NRL Memo. Report 3876,
Naval Research Lab., Washington, D.C., November 1978.

 2. Mary Shaw, et al. “Descartes: A Programming-Language Approach to
Interactive Display Interfaces," Proceedings of the SIGPLAN '83
Symposium on Programming Language Issues in Software Systems (ACM
SIGPLAN Notices 18(6)), June 1983, 100-111.

 3. Lawrence Rowe and Kurt Shoens, “Programming Language Constructs
for Screen Definition," IEEE Trans. on Software Engineering SE–9 (1),
January 1983, 31–39.

•

November 10, 1994
Software Productivity Consortium

6

 4. Proceedings of the ACM SIGPLAN SIGOA Symposium on Text
Manipulation (ACM SIGPLAN Notices 16 (6)), June 1981.

 5. Richard E. Fikes, “Odyssey: A Knowledge-Based Assistant," Artificial
Intelligence 16 (3), July 1981, 331-361.

 6. Alexander Borgida, “Features of Languages for the Development of
Information Systems at the Conceptual Level," IEEE Software 2 (1),
January 1985, 63–72.

 7. Reuse–driven Software Processes Guidebook, SPC–92019–CMC, v.
02.00.03, Software Productivity Consortium, Herndon, VA., November
1993.

 8. Brenda Laurel, Computers as Theater., Addison–Wesley Publishing Co.,
Reading, MA., 1992.

